知识点
定义
并集
A∪B={x∣x∈A或x∈B}A\cup B=\left\{x|x\in A或x \in B\right\}A∪B={x∣x∈A或x∈B}
交集
A∩B={x∣x∈A且x∈B}A\cap B=\left\{x|x\in A且x \in B\right\}A∩B={x∣x∈A且x∈B}
差集、补集
差集:A−B={x∣x∈A,但x∉B}A-B=\left\{x|x\in A,但x \notin B\right\}A−B={x∣x∈A,但x∈/B}
补集:Ac={x∣x∈Ω,但x∉A},Ω为全集A^{c}=\left\{x|x\in \Omega,但x \notin A\right\},\Omega为全集Ac={x∣x∈Ω,但x∈/A},Ω为全集
对称差集
AΔB=(A−B)∪(B−A)A\Delta B=(A-B)\cup (B-A)AΔB=(A−B)∪(B−A)
上、下极限
lim‾n→+∞An=lim supn→+∞An=∩n=1∞∪k=n∞Ak={x∣∃无穷个k,使x∈Ak}={x∣对∀n∈N,∃k≥n,使x∈Ak}\begin{aligned}
\varlimsup_{n\rightarrow+\infty}A_n
& = \limsup_{n\rightarrow +\infty}A_n \\
& = \cap _{n=1}^{\infty}\cup_{k=n}^{\infty}A_k \\
& =\left\{x|\exists无穷个k,使x \in A_k \right\} \\
& = \left\{x|对\forall n\in N ,\exist k \geq n,使x \in A_k\right\}
\end{aligned}n→+∞limAn=n→+∞limsupAn=∩n=1∞∪k=n∞Ak={x∣∃无穷个k,使x∈Ak}={x∣对∀n∈N,∃k≥n,使x∈Ak}
lim‾n→+∞An=lim infn→+∞An=∪n=1∞∩k=n∞Ak={x∣只有有限个k,使x∉Ak}={x∣∃n0∈N,当k≥n0时,x∈Ak}\begin{aligned}
\varliminf_{n\rightarrow+\infty}A_n
& = \liminf_{n\rightarrow +\infty}A_n \\
& = \cup _{n=1}^{\infty}\cap_{k=n}^{\infty}A_k \\
& =\left\{x|只有有限个k,使x \notin A_k \right\} \\
& = \left\{x|\exist n_0\in N ,当k\geq n_0时,x \in A_k\right\}
\end{aligned}n→+∞limAn=n→+∞liminfAn=∪n=1∞∩k=n∞Ak={x∣只有有限个k,使x∈/Ak}={x∣∃n0∈N,当k≥n0时,x∈Ak}
∩n=1∞An⊂lim‾n→+∞An⊂lim‾n→+∞An⊂∪n=1∞An\cap_{n=1}^{\infty}A_n\subset \varliminf_{n\rightarrow+\infty}A_n \subset \varlimsup_{n\rightarrow+\infty}A_n \subset \cup_{n=1}^{\infty}A_n∩n=1∞An⊂limn→+∞An⊂limn→+∞An⊂∪n=1∞An
当集列AkA_kAk有极限,或者是收敛的,那么limn→+∞An=lim‾n→+∞An=lim‾n→+∞An\lim_{n\rightarrow +\infty}A_n=\varliminf_{n\rightarrow+\infty}A_n =\varlimsup_{n\rightarrow+\infty}A_nn→+∞limAn=n→+∞limAn=n→+∞limAn
性质
(lim‾n→+∞An)c=lim‾n→+∞Anc(\varlimsup_{n\rightarrow +\infty}A_n)^c=\varliminf_{n\rightarrow +\infty}A_n^c(n→+∞limAn)c=n→+∞limAnc
(lim‾n→+∞An)c=lim‾n→+∞Anc(\varliminf_{n\rightarrow +\infty}A_n)^c=\varlimsup_{n\rightarrow +\infty}A_n^c(n→+∞limAn)c=n→+∞limAnc
例题
单点集的极限
设Ak={ak}A_k=\left\{a_k\right\}Ak={ak},当i≠ji\neq ji=j时,ai≠aja_i\neq a_jai=aj。lim‾k→+∞Ak={x∣∃n0∈N,当k≥n0时,x∈Ak}=∅\varliminf_{k\rightarrow +\infty}A_k= \left\{x|\exist n_0\in N ,当k\geq n_0时,x \in A_k\right\}=\emptyk→+∞limAk={x∣∃n0∈N,当k≥n0时,x∈Ak}=∅
lim‾k→+∞Ak={x∣∃无穷个k,使x∈Ak}=∅\varlimsup_{k\rightarrow +\infty}A_k= \left\{x|\exists无穷个k,使x \in A_k \right\}=\emptyk→+∞limAk={x∣∃无穷个k,使x∈Ak}=∅
所以,limk→+∞=∅\lim_{k\rightarrow +\infty}=\emptylimk→+∞=∅
设E、F为集合,作集列
An={En为奇数Fn为偶数 A_n=\left\{
\begin{array}{rcl}
E & & {n为奇数}\\
F & & {n为偶数}
\end{array} \right. An={EFn为奇数n为偶数
所以,lim‾n→+∞=∩n=1∞∪k≥nAk=∩n=1∞(E∪F)=E∪F\varlimsup_{n\rightarrow +\infty}=\cap_{n=1}^{\infty}\cup_{k\geq n}A_k=\cap_{n=1}^{\infty}(E \cup F)=E \cup Fn→+∞lim=∩n=1∞∪k≥nAk=∩n=1∞(E∪F)=E∪F
lim‾n→+∞=∪n=1∞∩k≥nAk=∩n=1∞(E∩F)=E∩F\varliminf_{n\rightarrow +\infty}=\cup_{n=1}^{\infty}\cap_{k\geq n}A_k=\cap_{n=1}^{\infty}(E \cap F)=E \cap Fn→+∞lim=∪n=1∞∩k≥nAk=∩n=1∞(E∩F)=E∩F
设fk,f:R1→Rf_k,f:R^1\rightarrow Rfk,f:R1→R为实函数(k=1,2,⋯ )(k=1,2,\cdots)(k=1,2,⋯),则D={x∣fk(x)↛f(x)}={x∣∃无穷个k∈N,使∣fk(x)−f(x)∣≥1n}=∪n=1∞lim‾k→+∞{x∣∣fk(x)−f(x)∣≥1n}=∪n=1∞∩N=1∞∪k=N∞{x∣∣fk(x)−f(x)∣≥1n}\begin{aligned}D&=\left\{x|f_k(x)\nrightarrow f(x)\right\}\\&= \left\{x|\exist无穷个k\in N,使|f_k(x)-f(x)|\geq\frac{1}{n}\right\}\\ &=\cup_{n=1}^{\infty}\varlimsup_{k\to +\infty}\left\{x||f_k(x)-f(x)|\geq\frac{1}{n}\right\}\\&=\cup_{n=1}^{\infty}\cap_{N=1}^{\infty}\cup_{k=N}^{\infty}\left\{x||f_k(x)-f(x)|\geq\frac{1}{n}\right\}\end{aligned}D={x∣fk(x)↛f(x)}={x∣∃无穷个k∈N,使∣fk(x)−f(x)∣≥n1}=∪n=1∞k→+∞lim{x∣∣fk(x)−f(x)∣≥n1}=∪n=1∞∩N=1∞∪k=N∞{x∣∣fk(x)−f(x)∣≥n1}
#注:本篇习题皆来自于《实变函数论》徐森林编著。